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1. Introduction 

The United States Bureau of the Census 
response error model (hereafter, CRE) has been 
found to be useful for the elucidation of non- 
sampling errors by a number of investigators 
(Hansen et. al. (1961), Hansen et. al. (1964), 

and Koch et. al. (1975)). The CRE extends in a 
straightforward manner to complex cross- classi- 
fications of survey data (Freeman (1975)). This 
paper will utilize the CRE model to investigate 
the effects of complex post -sampling data adjust- 
ments on the estimated variances. 

The major portion of the discussion is 
devoted to the effect of "raking the data" to 
known margins. This procedure, proposed by 
Deming and Stephan (1940), is also known as 
iterative proportional fitting (denoted IPF). 
IPF is also used to obtain maximum likelihood 
estimates for fitting log- linear models to data 
from a Poisson or multinomial distribution 
(Fienberg (1970)). An approximation to the var- 
iance matrix generated by the procedure is given 
in Section 3 along with a statistic for the 
evaluation of the variance reduction achieved by 
the procedure. These results are then applied 
to the special case of simple ratio adjustments 
for representativeness and non -response. These 
simple ratio adjustments have been investigated 
empirically by Brock et. al. (1975). 

While IPF is a post -sampling adjustment 
aimed at variance reduction, it is also of 
interest to fit other types of functions to sur- 
vey data. Examples of these are functions which 
are directed at the underlying process which 
generated the responses of the surveyed popula- 
tions. The multiple logit and the bivariate 
Weibull are two examples of such functions and 
are discussed in Section 5. The important point 
that is brought out is that these functions are 
within the scope of the CRE and the method of 
analysis is completely consistent with that used 
for the IPF discussion. 

2. The IPF Post -sampling Adjustment Procedure 

One approach to the minimization of non -sam- 
pling errors is to adjust the survey estimates of 
the frequency counts in cross -classified data to 
correspond to an independently determined set of 
population parameters of margins. The IPF 

adjustment uses these margins directly in the 
adjustment process. Thus the data set is forced 

to reflect pre -determined criteria of repre- 

sentativeness, an intuitively appealing property. 
However, in the context of simple random sampling 
IPF has several additional properties. Fienberg 

(1970) showed that IPF will converge to a set of 

domain or cell estimates under fairly general 
conditions. These conditions are that an under- 

lying multinomial is a correct model and that 
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there are observations in all of the fitted 

cells. The latter condition is true for many 
large surveys as long as the cross -classification 
is not too complex. The importance of the former 
condition is now known. A related property is 

that underlying measures of association are pre- 
served by the procedure (hosteller (1968)). A 
third property, to be exploited here, is that IPF 
maximized the likelihood equation of the multi - 
namial distribution (Fienberg (1970)). 

Some notation is required for the simplicity 
of discussion. Let the population consist of N 
individuals, denoted i, n of which are selected 
for the sample. The sampling procedure may be 
characterized by the indicator function, ui: 

I1 if individual i is selected, 
ui 

0 otherwise. (1) 

For simplicity it is assumed that there are no 
complex measurement effects. Implicitly there is 
a known structure on the expected response vec- 

tor, Yi. This means that the category of 
response, j, reflects the joint response compo- 

nents for i which may be arrayed as an s- dimen- 
sional con3ngency table. The k -th variable may 

contain up to Jk levels, k - 1 ..... s. 

For example, consider a set of 8 binary 
responses. Then a vector with 28 compo- 
nents and, 

if individual 
i is classified 
in category 

otherwise. 

Here, jk 1,2 for k = 1,2,...,8. 

The corresponding estimates for the popula- 
tion distribution are given by, 

N u 
Y and 

i=1 (3) 

( 22...1'22...2) 

where E {ui} = is the selection probability of 

the i -th individual and, 

N ui 

il o . 

The components of various margins may also be 

expressed as vectors. For example, 

N ui (5) 

N 



where the sum is over all j with jk! 

= Then 

+...k'...k "...+ +...1...1...+' 

For the general situation suppose the (s- 2,s -1), 
(s -2,$) and (s -1,$) pairwise margins may be 
taken as given. Then the IPF adjustment is given 
by, 

= N*(I-1,3) 
N*(I-1,3) 

N*(I,2) 

= N 
N*(I,1) 

= 
N*(I,2) 

(6) 

where and I is the 

superscript indicating the cycle of the adjust- 
ment. This procedure converges in most cases of 

interest to a set of estimates N where 

N+...s-2,s-1,+ N+...s-2,s-1,+ ' 

..+...s-2,+s 
N+...s-2,+,s-1 

' 

N+...+,s-1,s 

(7) 

the fixed margins. These estimates maximize the 
multinomial likelihood equation 

N+...+,s-1,$) = 
ln(constant) 

(8) 

+ 

-N(1...Y - 1) 

all j 
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where = N 

estimated subject to (7). Thus 
* 

mates P are obtained from IPF, 

IN is to be 
. 

, a set of eati- 
* * 

Tr P N 

where "a" means is estimated by. 

There are two reasons for being interested 

in the characterization of given by (8). The 
first (Koch and Tolley (1975)) is that they cor- 
respond to a set of smoothed means. The corre- 
sponding equations (8) are a useful modeling 
tool which are computationally simple, intu- 
itively suggestive, and have desirable large 
sample properties. The second reason is that 
(8) may well have meaning in the context of 
super population theory and that the only diffi- 

* 
culty with is in obtaining estimates of the 
variance matrix which reflect the complex sam- 
pling plan characterized by the ui. As will be 

shown, if consistent estimates of the variance 

matrix N exist, then corresponding estimates of 

exist. This point follows easily from the 
theory of implicit functions. 

The constraints in (7) imply an underlying 
set of parameters for the multiplicative asso- 
ciations in the cross -classification (Fienberg 
(1970)). That is to say, there exists an impli- 
cit function F(ß) where the ß are a unknown set 
of parameters; such that 

= 

u ( J,) - 1 
k=1 

(9) 

Thus, may be substituted for in (8) and 
(8) maximized under (7) by IPF. Thus, IPF 

solves, 

(lnF(ß))t - o (10) 

where p = 
1 

N. It follows that is implicitly 
A 

defined in terms of p, H(p). For regular 

functions is differentiable about 
some value of 7, say and therefore can be 

expanded in a Taylor series about 

-H(p) 2h(p) -H(?r0)+ 

(11) 

p 

From (3) it follows that E {p} so is a 

consistent estimate of when obtains and 

the IPF model is appropriate. This permits the 

definition of the linearized variance of to 

be, 



V(ß) (p) 

p 
(12) 

where may be any valid and consistent esti- 

mate of the covariance matrix of p which 

reflects the underlying sample design. Such 
estimates may be obtained by the method of Bal- 
anced Repeated Replication (BRR) as discussed by 
McCarthy (1966), Koch et. al. (1975), and Brock 

et. al. (1975). Once V(ß) is in hand another 

similar Taylor series expansion of F(ß) yields 

V(p *) since (9) implies p F(ß). Thus ) 

is sufficient for a consistent estimate of V(p ) 

as was to be shown. The only difficult term is 

/ap) which can be found by differentiating 

(10) by p. 

3. The Variance Structure of the IPF Model 

The equation for V(ß) shows the importance 

of the form which F(ß) takes. Specifically, for 

the model shown in (8) which IPF maximized, F(ß) 
takes a log- linear form, 

= exp{X (13) 

s 
where X is a (( x u) design matrix which 

corresponds to a complete factorial design 
(Fienberg (197Ob)), with additive constraints. 
For example, if there are three binomial 
responses, then 

1 1 1 1 1 1 1 1 

1 1 1 -1 1 -1 -1 -1 

1 1 -1 1 -1 1 -1 -1 

X 
1 1 -1 -1 -1 -1 1 1 

, and = 

1 -1 1 1 -1 -1 1 -1 

1 -1 1 -1 -1 1 -1 1 

1 -1 -1 1 1 -1 -1 1 

1 -1 -1 -1 1 1 1 -1 

01 

2 

ß4 

ß7 

If 81 through 88 are estimated, this is equiva- 

lent to not adjusting the data. If the total 

population size is known then 81 is fixed. If 

the first order margins are known then 82' 83' 

and 04 are fixed. If the second order margins 

are known then and ß7 are fixed. If the 

third order margin is known then the sample need 
not have been drawn. These parameters correspond 
to various levels of multiplicative association. 
The usual level of adjustment is done in the 
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reverse of the order of model reduction in the 
linear models context. That is, the highest 

order terms are the last to be eliminated. 

Returning to the V(ß) implied by (13) the solu- 

tion for follows the method of proof 

given in Koch and Tolley (1975). 

Let, 

F(1) = (15) 
i 

s 

where i = 1,...,r = Jk, j 1,...,u, and 

k =1 

(ß) - (Fi()) 
2 

Noting that F_,(0) = 1 implies F(1) (ß) 

i =1 =1 

(2) = F (ß) = O. Then 

F(l) 

[F(1) /F 
i i=1 

for i = 1,...,r; j = 1,...,u. 

Substituting (15) and (16) into (13) yields: 

(ß) /F1(ß) - 

[Fi;) 
(ß)]2 /Fi(ß) = 

These in turn yield 

ap 
* 

x11 x21 xrl 

2* 2* r 2* 

x12 x22 

2 * 2 * 2 * 

041, 

xlu x2u 

2 * 2 * 2 * 

i=1xiuPi 

G(p ) 

(16) 

(17) 

(18) 

(19) 



When = 2, k = 1,. .,s then 1 all i,j so 

X' (20) 

So returning to the original problem of 

approximating 

= H(P) (21) 

= 
*) 

*)1t (22) 

p = exp{X 
and 

*) 

(23) 

V(p = V(p) GIG D* , (24) 

where G = G(p ) is defined in (19) and is a 

diagonal matrix with the IPF estimates on the 

main diagonal. As noted in Section 2, may 

be obtained from BRR or any other method which 
yields consistent estimates. 

Given these estimates of the variance matrix 

of it is desirable to find an overall measure 
of the variance reduction achieved by IPF. One 
approach is suggested by the use of weighted 
least squares as discussed in Koch et. al.(1975). 

Let be the vector of sample estimates with 

the r -th element deleted and V 
1 

be the corre- 

sponding covariance matrix. Similarly define p 
u 

and Vu(pu) as the vector of adjusted estimates 

with the last r - u elements deleted and the 
corresponding covariance matrix. Then if 

- 1 bl) where b1 is estimated by 

weighted least squares and 1 is a vector of 
(r - 1) l's, then 

- h (25) 

is a measure of the total variation in the unad- 
justed cross -classification. Similarly, 

u (26) 

is a measure of the total variation in the 
adjusted cross -classification. For large data 
sets in the super -population context Ql and 

have X2 distributions with r - 1 and u - 1 
degrees of freedom respectively. Moreover, these 
form valid indices of the overall variance reduc- 
tion achieved by IPF. 

4. Application to Poststratification 

Some sample surveys are conducted in such a 
way that for single margins involving several 
variables complete information about the target 
population is available. For example, in a sur- 
vey to determine health characteristics, the 
demographic characteristics for each of the sur- 
vey strata may be independently determined. 
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Thus, the ratio of the known variables to their 
estimated values may be used to inflate the 
strictly estimated survey variables. This pro- 

cess is known as poststratification. Frequently, 

this inflation takes the form of a simple multi - 
plicative adjustment. 

The poststratification procedure is in fact 
a simplified form of the IPF procedure discussed 
in Sections 2 and 3. What is done is to array 
the demographic variables as a single variable 
with a number of levels equal to the product of 
the number of levels in each of the known var- 
iables. Thus, the poststratification corre- 
sponds to a single iteration of the IPF algo- 
rithm. It immediately follows from the discus- 
sion in Section 3 that the Q statistic is 
increased to the extent of the elimination of 
sampling variance and measurement error. There 

is a corresponding reduction in the standard 
errors. A cautionary note should be observed 
in that poststratification, as with the IPF pro- 
cedure, will induce bias in the estimate to the 
extent of error in the known variables. 

The important point is that when poststrati- 
fication, or for that matter IPF, is contemplated 
the Q statistics and their corresponding ratios 
may be computed to estimate the relative improve- 
ment in precision. Thus, assessments may be 
made and weighed against the possibility of 
inducing bias in the estimation process. 

5. Complex Postsampling Models 

Subsequent to the selection and analysis of 
a sample survey, substantive analysts.often 
become aware of the possibility that the 
responses were in fact generated by an under- 
lying stochastic process. These processes 
usually can be formalized into some type of 
statistical function. Two such functions are 
the multiple logit and the Weibull distribu- 
tions. Each of these distributions have found 
wide acceptance in the biological and social 
sciences because of their flexibility and inter- 
pretability. The fitting of these distributions 
for survey data may easily be implemented in the 
framework of the CRE model as will be demon- 
strated. Here the multiple logit is considered 
in the context of multiple binomials and the 
Weibull is considered in the context of a bivar- 
iate distribution for a cross -sectional repre- 
sentative sample. 

Consider the situation where the survey 
responses are classified by two levels for each 

of three factors. This is again a 23 design on 
the response space. Let denote the prob- 

ability of a response at joint levels (i,j,k) 
where i = 1,2, j 1,2, k - 1,2; and 

2 2 2 

i=1 j-1 
1 . 

Then the multiple logit model is: 

(27) 



in i + 
xijk ß3 

(28) 
+ + + ß6 - ln D 

where 

and 

1 k= 2, 

x(2)=1 j 2, 0 
ijk 

xijk 
= 1 2, 0 

(4) (2) (3) 

xijk x ijk xijk 

(5) (2) (4) 
xijk x ijk xijk 

(6) (3) (4) 

xijk = x ijk xijk 

otherwise; 

otherwise; 

otherwise; 

C2 C2 D p{L 
1=1 j=1 k=1 r=1 

Implicit in the model is the constraint (27) and 
the eighth degree of freedom is reserved for a 
goodness of fit test. The formulation of Sec- 
tions 2 and 3 in terms of models which corre- 
spond to maximum likelihood functions may also 
be used. The essential point is the use of max- 
imum likelihood search procedures to estimate the 

The estimation of standard errors again 
requires the evaluation of 

where, 

in Fijk(ß) 
ßr 

ln D. 

Thus, as with the IPF procedure, and V(ß) may 

be obtained by substituting p for in (28). 
* 

This in turn yields the estimates of p and V(p ) 

under the model, where p refers to the logit 
model proportions. 

An asymptotically equivalent procedure is 
that of weighted least squares. The formulation 
is as follows. 

where 

Let 

(32) 

-1 1 0 0 0 0 0 0 

-1 0 1 0 0 0 0 0 
-1 0 0 1 0 0 0 0 

A I8 K = -1 0 0 0 1 0 0 0 

-1 0 0 0 0 1 0 0 

-1 0 1 0 

-1 0 0 0 0 0 0 1 

1 0 0 0 0 0 

0 1 0 0 0 0 

1 1 0 1 0 0 

X = 0 0 1 0 0 0 = 

0 1 1 0 

0 1 1 0 0 1 

1 1 1 1 1 1 

Then may be estimated directly from weighted 
least "squares procedures and corresponding esti- 
mates of obtained by inverting (32). Again, 

the only critical aspect is in obtaining V(p) 

(29) from some procedure such as BRR. Thus, it is 

apparent that functions with a simple expo- 
nential form, such as multiple logits, may be 
fitted to complex survey data. The bivariate 

(30) Weibull distribution represents a more complex 
function. 

In matrix notation the solutions may be written 
as in (10). 

The covariance matrix of the parameters 
may now be obtained from (17) and (12). In par- 
ticular, after some algebra 

6H(p) 

SE 

3 1'. 1 2 1 2 i 2 
1 

. 1 1 2 2 1' 2 
-1 -1 -1 -1 1 1 1 

T 1 1 1 2 2 
_1_-1 -1 3 -1 -1 
1-T 1-ir 1-n 1-n 

22 11 22 12 21 12 12 

-1 -1 -1 
1-n i-T 1-n 1-n 

32 21 12 2.2 22 2 

-1 -1 -1 -1 -1 -1 
1-n 1-T 1-T 1-n T 

22 22 22 22' 22' 21 22' 12 J 
(31) 
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The Weibull distribution has been of inter- 
est to statisticians since its introduction to 
the literature, partly because of its usefulness 
in data which are thought to reflect either 
increasing or decreasing hazard functions. If 

t represents the time to the occurrence of an 
event of interest (e.g., a death or the detec- 
tion of a tumor), then the Weibull cumulative 
distribution function may be written as: 

G(tJp,d,w) = 1 - exp {- u(t 

for t and 0. 

(33) 

As demonstrated in Freeman, Freeman, and Koch 
(1974) such models may easily be fitted in the 
usual weighted least squares framework. This 
may be seen by examining 0(t) which denotes the 
log -log of the survival rate. Specifically let 

8(t) ln[-ln{1 - G(t1u,d,w)}] 

ln(u) + ln(t-w), 
(34) 



where ln(p) and are to be estimated and w is 
to be fixed by the experimental situation. With 
this reparameterization 8(t) can easily be fit- 
ted, both for univariate and bivariate data. 

Typically, the Weibull distribution is fit- 

ted to data which is assumed to arise from a 
simple random sample. However, the CRE model 
and the variance estimation procedure of BRR 
permit the fitting of this distribution to data 
arising from a complex sample survey. The only 
change would be instead of estimating 
based on the multinomial model assumption, V(p) 
would be based on the Balanced Repeated Replica- 
tion procedure. 

6. Summary and Conclusions 

This paper was concerned with various post - 
sampling adjustments to complex survey data and 
the fitting of complex functions to such data. 
The IPF (iterative proportional fitting) pro- 
cedure was investigated and an approximation to 
the variance structure induced by the procedure 
was developed. Further,, a statistic, Q, was 
suggested for evaluating the overall variance 
reduction achieved by the procedure. This stat- 
istic is particularly useful since it is a 
natural by- product of the inference structure 
discussed in Koch et. ai. (1975). 

The discussion of IPF was followed by a dis- 
cussion of the procedure for fitting more complex 
distributions to data. The multiple logit and 
bivariate Weibull distributions were examined in 
this context. It was pointed out that once the 
distribution of interest had been reparameterized 
into the linear model framework, the only change 
from the simple random sampling inference struc- 
ture was in terms of estimating the variance 
matrix. This was shown to be easily accomplished 
when BRR is used. Thus, it follows that the 
response error model in conjunction with the BRR 
permits the implementation of the weighted least 
squares methodology for inference in the post - 
sampling analysis of complex sample survey data. 

ACKNOWLEDGMENTS 

This research was in part supported by the 
National Institutes of Health (Grants GM -70004 
and HD- 00371) and by the U. S. Bureau of the Cen- 
sus through Joint Statistical Agreements JSA 74 -2 
and JSA 75 -2. 

423 

REFERENCES 

Brock, D.B., Freeman, D.H., Freeman, J.L. and 
Koch, G.G. (1975). An application of cate- 
gorical data analysis to the National Health 
Interview Survey, Proceedings of the 1975 
Social Statistics Section of the ASA. 

Deming, W.E. and Stephan, F.F. (1940). On a 
least squares adjustment of a sampled fre- 
quency table when.the expected marginal 
totals are known, Ann. Math. Stat. 11, 427- 

444. 

Fienberg, S.E. (1970). An iterative procedure 
for estimation in contingency tables, Ann. 
Math. Stat. 41, 907 -918. 

Freeman, D.H. (1975). The regression analysis 
of data from complex sample surveys: an 

empirical investigation of covariance matrix 
estimation, Institute .of Stat. Mimeo Series 
No. 1020, Chapel Hill, N. C. 

Freeman, D.H., Freeman, J.L., and Koch, G.G. 
(1974). A modified X2 approach for fitting 
Weibull models to synthetic life tables, 
Institute of Stat. Mimeo Series No. 958, 
Chapel Hill, N. C. 

Hansen, M.H., Hurwitz, W.N. and Pritzker, L. 
(1964). The estimation and interpretation 
of gross differences and the simple response 
variance, in Contributions to Statistics, 
Pergamon Press Ltd., London, 111 -136. 

Koch, G.G., Freeman, D.H. and Freeman, J.L. 
(1975). Strategies- in the multivariate anal- 
ysis of data from complex surveys, Int. Stat. 
Rev. 43, 55 -74. 

Koch, G.G. And Tolley, H.D. (1975). A general- 
ized modified X2 analysis of categorical 
bacterial survival data from a complex dilu- 
tion experiment, Biometrics 31, 59 -92. 

McCarthy, P.J. (1966). Replication: an approach 
to the analysis of data from complex surveys, 
Vital and Health Statistics, P.H.S. Pub. No. 
1000, Ser. 2, No. 14, National Center for 
Health Statistics, Rockville, Md. 

Mosteller, F. (1968). Association and estima- 
tion in contingency tables, J.A.S.A. 63, 
1 -28. 


